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THE THERMAL PROBLEY FOR A SUIMERGED STREAM* 

M-A. GCL'DSHIIK and N-1, YAVORSKII 

The general solution of the thermal problem of convective heat conduction 
with volume heat dissipation caused by viscous dissipation of kinetic 
energy of the fluid, whase velocity field is determined by the exact 
solution /l/ of the Navier-Stokes equations, is considered for a sub- 
merged stream. The possible formulation oftheheat problem and the 
characteristic behaviour of the solutions are investigated. The solutions 
obtained have a special feature, namely the existence, under specified 
conditions , of two regimes of convective heat exchange, 

A particular solution of the problem in question corresponding to a point heat source 
superimposed on the steaai source was obtained in /2/, without taking into account the 
dissipative heat emission. The solution corresponds to the first term of the expansion of 
the temperature in a series in multipoles 

where R,0 are spherical ceordinates and the angle 6 is measured from the stream axis. The 
appearance in (1) of the fractional indices a,, is connected with the presence, in the 
equation of heat conduction 

of the convective term which changes the spectrum of the operator L. 
The velocity field for a submerged stream has the form /l/ 

LT+ L=(u, v)-UA 
P 

(2) 

(31 

The coefficients of kinematic viscosity v and thermal conductivity a are assumed to be 
constant, A>1 is a constant connected monotonically with the momentum of the stream 

I+ q&j-~ n- 
Ai A”f-1 

A-l I 
and according to @)I+0 as A-m and I-tm as A -+ 1. 

The expansion (1) holds only for the solution of the homogeneous equation (2). The 

solution of the inhomogeneous equation of heat conduction (2) contains, apart from (l), a term 
whose form is determined by the dissipative heat source. Without the convective terms in the 

homogeneous equation the expansion (1) aseumes the classical form, with a, = R and r_, 

being spherical functions. In the general case a,,#n, n> 1. According to (31, the 

dissipative function in (2) is proportional to Rq4, and this generates in (1) I with one 
exception which will be noted below, an additional term of the form z (2) R-" corresponding 

to the particular solution of the inhomogeneous equation. 
Substituting (1) and (3) into (21, we obtain for a,, # 2 

(1 -z2)._&_ - 2x&,' + pr(!%'+ W/T,) + a,(%-- l!%=o (5) 
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The particular solution of the inhomogeneous equation corresponds to the value a, = 2 

and satisfies the equation 

(i - ra.2) u” - ZZZA' + Pr (yu' + 29'4 _c 2u + Qt (2) = 0 S5) 

Q)($)E)E- :"9-$ + ";'d",;" +. 2;;cz;!1 - (5) 

%4(.4*-i) + AS A 
(A - t)S (A - zy f-i 

1BPr v” pr v 
zwz----B, --L- 

5 
0 

Here rb {x) is a normalized dissipative function and cg is the heat capacity. 
Since the stream axis (x = fl) belongs, when R#O> to the region of flow, it 

follows that we should demand that the solutions of (5) and (6) be bounded at the points 2 = 

&tl at which the velocity field (3) is analytic, The Linear equations (5),(6) belong to 
the Fuchs class /3/, and since the defining equations have double zero Foots at the points 
r=il, it follows that in the neigbbourhood of each of the singularities x = ff one of 
the solutions of each equation is analytic , and the other has a logarithmic singularity, 

Thus the solutions behave like Legendre functions. For the analytic solutions we have 

(1 - .rz)z,"-+CJ as x+&l. This yields the conditions (only the upper or lower plus and 
minus signs are taken) 

22,’ kkl) ‘F [Pr w.4’ kt1) -i- &n (a, - 111 ‘F, frt*J = 0 (81 
14’ (fl) T [Pry’ (hi) -k iI u (54) ‘F V&D fki) = 0 @f 

We note that the condition that the derivatives ?,'(f~), U' (rbi) be bounded leads to the 
following relations: 

&&0 = d&d@ le,o, z 

corresponding to the axial. synnnetryofthetemperaturefield.Problem (5), (8) isaproblemintbe 
eigenvaluesh, = a, &-- 1) and the corresponding eigenfunctions r, of the multipole 
expansion (1). Here z, are found apart from arbitrary constant multipliers C,, whose 
assignment determines the structure and intensity of the thermal singularity at the point 
R =o. We see that when a1 = 1, the eigenvalue of the problem is 4 ==O and the 
corresponding eigenfunction is 

% (r) = e,rp (z), rp (2) = (d - r)-sm (W 

The solution (10) obtained in /2/ corresponds to a heat source whose given intensity 
determines the constant Cr. 

Instead of specifying the intensities C,, we could e.g. specify fox problems f5),(8) 
an arbitrary temperature field T (R,,e) on a sphere of radius R,. Then the coefficients 

G would be uniquely determined in the case of a complete system of linearly independent 
functions. 

Equation (5) is the result of the action of a non-selfconjugate generalized differential 
Legendre operator 141 on z,, whose spectrum consists of isol.ated eigenvalues without the 
limit points. The lineax envelope of the eigenfunctions of this operator is dense in I,,((--1, 
1)) /4/* Consequently the system of functions r,, is camplete in L,([---1,1]), since it allows 
the analytic continuation of the paints z - &l. 

The eigenvalues h, = er, (a, - 5) of the differential operator in (5) are real, and the 
eigenfunctions are orthogonal, with weight fit+ 

Indeed, substituting r,, = (pgn into (5) we obtain I(1 - 9) cpg,'J' + (a, - i)Pry' rpg, + h,,cpg, = 
0, from which we obtain, using standard procedures, 

81 - r8) g, (&I&' - &.&')I 1-r' + f% = 0 
1 

A=(h,-- U 5 tpmzm dr 
--I 

Since cp, gnr g, are analytic at the points 2 = *tz1, therefore A = 0 and this implies 
the orthogonality of the system of functions z, when n+& as &,=f=& 

Replacing t, by z,* and h, by A,,* respectively (the asterisk denotes the complex 
conjugate), we obtain from the condition A = 0, (q,fO)&, =hn*,i.e. all eigenvaluesoftbenon- 
selfconjugate differential operator of the equation (51 are. real. 

The eigenvalues h, and a, depend on two parameters, the rn~ent~ of the stream and 
the Prandtl number. Clearly, when Pr =0 or I+O, the convective terms in (5) vanish 
and a, = n, while the corresponding A,, = n(n- 1)>. 0 far any integer value of n. 

We note that when Pr are arbitrary and A (>I), 
smallest eigenvalue at all Pr and A is 

all eigenvalues &(Pr, A)>0 since the 
h,=O. This follows from the solution /2/ and 

the fact that all eigenvalues continuous in Pr and A are isolated. 
that the indices a, 

This in turn implies 
in (1) are also isolated and real. From the physical point of view it 
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means that the solutions of the homogeneous equation (2) with velocity field (3) are not of 
the wave type. It is convenient to replace the number A or moment I by the Reynolds number 

a 40 80 %?a Re 

Fig.1 

Re = (-$-)I" 

The relations o;, = a, (PC, Re) obtained by 
numerical methods (described below) are shown 
in Fig.1, for n = 1,2,3,4 and Pr = 0.5, and also 
for n = 2 and various values of Pr. Wenote 
that the curves uZ (0.5; Re) and a, (0.6; Re) 
lie on different sides of the horizontal line 
a, = 2. When 0.5 < Pr < 0.6, the curves 
showing the dependence of a2 on Re intersect 
this horizontal, and this is shown for thecase 
Pr = 0.54 with a dash-dot line. This will be 
important in what follows. 

Thus, problem (S),(8) has a solution for 
all admissible values of the numbers pr and 
Re. The solution of the homogeneous Eq.(2) 

therefore exists and is unique in the form fl), at least for a heat problem outside a sphere 
of radius R,, with any type of thermal boundary conditions at its surface and zero (or 
finite and constant) temperature at infinity. 

In the case of a thermal problem in a spherical layer, series (1) must be supplemented 
by terms with positive powers of R. This is met by writing the solution in the form 

A solution of this problem clearly also exists and is unique, provided that we specify 
any thermal conditions at the boundaries of the spherical layer. Evidently, the existence 
and uniqueness of the solution of the boundary value problem for the homogeneous equation of 
convective heatconductionwilloccur in the case of the Laplace equation, and for regions of 
more general type. 

We have a different situation in the case of the inhomogeneous problem (6),(g), in which 
the dissipative heat emission is taken into account. If we write formally in Eq.(S) a, = 2, 
it will be identical with Eq.(6) in which @ (z) pe 0. 

Ccnaputations show that at definite values of pr and Re problem (S),(8) has h,=2 as 
the eigenvalue corresponding to a, = 2. In these cases the solvability of the inhomogeneous 
problem beomes questionable. We can show analytically, using the Fredholm alternative, that 
problem (6),(g) has no solution as Re+oo, provided that Pr = 1/a. 

When the values of the Re number are arbitrary, we have a curve Pr, = Pr(Re) on which 
the boundary value problem (6),(g) has no solution. The curve will be computed by numerical 
methods. 

The computations were carried out as follows. We posed two Cauchy problems for the 
homogeneous Eq.(6) 

U+ (0. U_ (--I)* "f' (*I) (9) @((+1)= 0 

The solution was obtained using the Runge-Kutta-Mercen method with a relative error per 
step of 1OJ. The integration was carried out up to some point of matching zC lying in the 

region of steepest gradients. The solution U_ (x) is analytic near the point I= -1 and 

becomes, generally speaking, unbounded when 2= i. If however a set of parameters Pr and 

Re exists for which the solution u-(z) will also by analytic when z= 1, then the functions 

u-(3 and U+(Z) will be identical, apart from constant multipliers, everywhere in the interval 

I--1, il. To make it happen for the solutions of the homogeneous second-order Eq.(6) with 
homogeneous boundary conditions (9), it is sufficient that the functions and their first 
derivatives agree at any point ze of the interval 

Au_ (ze) = Bu+(z,), AU_' 1%) = Bu,' kc) 

The condition that the hove system has a non-trival solution is, that the determinant 

A= 
u_ (zc) u+ (2,) 

u_'(z,) u+'(z,) 

does vanish. If at some value of Pr(Re) the quantity A = 0. thentheproblemofa solvability 

of the inhomogeneous problem is dealt with as follows. The solution of inhomogeneous Cauchy 

problems, where 'D(+f) is obtained from (7), can be written for (6) in the form Au_+ Bu_O 

and Bs++ u+O where the superscript a denotes the particular solutions of the inhomogeneous 
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equations. The necessary condition for these solutions to agree, andthus for the inhomogeneous 

problem to have a solution, is the vanishing of the determinant 

provided that A= 0. If A,# 0, then the inhomogeneous problem has no solution. 
Figure 2 shows the results of the computations in the form of the relation Pr, = Pr(Re) 

in case when B = 0. We see that the numerical computations corxespond to the asymptotic 
analysis for the case Ae-r 0~. We note that the same algorithm was used to determine the 
eigenvalues a, (Pr, Re) of (51, representing the roots of the equation A (a,,) = 0. 

It should be stressed that the lack of a solution to problem (6),(9f does not imply the 
insolubility of the initial stationary problem of convective heat conduction with viscous 
heating (2), provided that the velocity field is given in the form (3), On the insolubility 
curve Pr, = Pr(Re) the index of the dipole term in (1) a,(Pr,Re) and the solution of the 
inhomogeneous equation proportional to R -a interact with the solution of the homogeneous 
equation in such a manner, that the dependence of R on the inhcanogeneous equation becomes 
different; thus problem (6f, (9) loses its meaning on the curve pr(Re) where cr,(Pr, Re)=2. 

In this case we shall seek the particular solution of the inhomogeneous Eq. (2) in the 
form 

T(R, .)a.+$ +C+$W?, C=const (12) 

which is dictated by the power dependence of the solution of the homogeneous equation and 
heat source in 12), on R. Substituting (12) into (2) and taking (3) into account, we obtain 

1(1 - z*) +'I' + 2u, + Pr &y’s0 + pg’) = (3 + Pr g’) Cu, - CD (2) 03) 

I(* - 2%) ~~‘1’ + 2u, + Pr (2y’u, f gu,‘) = 0 (14) 

The boundary conditions for (13) follow from (9) after the substitutions u+v,,@+ 
Q, - (3 + Pr y’) Cu,, and for (14) from (8) after the substitution ~,,-+~,,a,+2 and the 
assumption that u,(l)= i. The constant C is chosen from the condition for (13) A, (2,) = 
0 (Ii) to be solvable. 

The constant C does not depend on the matching point z=, since we can find C in the 
same manner from the condition that the solution of theequation conjugateto (14) isorthogonal 
to the right-hand side of (13). The fact that the solution oftbeconjugateequation is not 
trivial follows from the insolubility of problem (6),(g) and the Fredholm alternative., The 
solutions (13) and (14) are shown in Fig.3 for certain values of Pr (Re), and we have put 
there u1 (1) = 1. Curves 1 correspond to Pr =0.56, Re = 7.08; 2 - Pr 10.55, Re =9,23; 3- Pr = 
0.54, Re = 12.1; 4 - Pr = 0.53, Re = 16.3. 

A special feature of the solutions of (7) is the presence of a region in which u(z)<O. 
Thus the viscous heating leads to the appearance of a negative contribution towards the 
temperature, stipulated by the dipole character of the term with II = 2 in expansion (1). 

Indeed, in the limit when Pr= 0, we have o(~)=Ccz so that U(Z) change their sign 
when z = 0. 

Let us consider the case of Pr- 43. We shall consider the solution of (7) near the 
point s=l. Putting t= 1 -z-sgl, p= ZPrI(A - 1) we obtain from (6) 

tzz + (i + pt) u' + 2pu + 0, flfi2 = 0 (i/p, if. 11 = lb (#) 

The solution of this equation has the following form, up to second-order infinitesimals: 

U (t) = c (i - Pt) e-" - UJ (1)/(4P), c = coast 

From this we have u<O when 1 = l/p ( therefore by virtue of the continuity there 
exists a domain of values of z where 0 < 0. 

In the case of. arbitrary Pr and Re we obtained the solution of (6) by numerical 
methods. Figure 4 shows characteristic profiles of n(x)near the curve of insolubility. The 
number Pr serves as a parameter with Re = 152 fixed, Curves 1-6 correspond to the values 
of the Prandtl number equal to 0.525; 0.529; 0.531; 0,533; 0,535; 0.539. We see that when the 
solution passes through the value Pr, lying on the insolubility curve, it undergoes a quali- 
tative change and the physical meaning of the solutions also becomes different. 

We note that a solution of type (12) is complete for the problem In question, since the 
eigenvalues of the homogeneous problem are isolated. 
then we would have to add in (11, as well as in (12), 

If any of the eigenvalues were repeated, 
terms in the form of the k- i -th 

degree polynomials in 1nR where k is the multiplicity, multiplied by Rdn where a, determines 
the k-tuple eigenvalue 1, =cz,(o,- 1). 

To explain the physical meaning of the insolubility curve, we &all consider a simple 
example of a thermal problem of convective heat conduction with viscous heating for a plane 
hydrodynamic sink. 
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Fig.3 Fig.4 

The heat conduction Eq.(2f of the axisymmetric problem with velocity field 

Q 
wr=--2nr, U*SO 

where (r, 8) are polar coardinates and Q denotes the consumption (Pe is the Peclet number), 
takes the form 

Pe dT 1 d dT q Q 4vaPe~ 
---;-a;'~'drT;r, PC?==' $I=- 

$ 
(15) 

The solution of (15) with boundary conditions Tfr,)= T,,, T(w)=0 has the form 

We see that the solution has the same character as that in the case of the Landau jet. 
The point Pe=Z corresponds to the insolubility curve. When Pe-co, solution (16) implies 
that the term -,-PC characterizes the thermal boundary layer at r=r*. When Pe=co, the 
thermal problem becomes a problem of convective heat transfer without thermal diffusion. The 
boundary conditions for this problem can only be posed at the boundary of the fluid inflow, 
and in this case the condition is T(oo)=O. At large, but finite values of Pe, convective 
heat transfer prevails over conductive transfer, so that the conditions at the outflow boundary 
fr=r*) are not of major importance. This region of convective heat transfer corresponds to 
Ps>Z. 

When Pe<2, the formulation of the boundary condition at r=ro is of major importance, 
since when T-CO , the term -rep' becomes dominant and determines the temperature of the 
fluid at the inflow region, In this case the boundary conditions interact, and this represents 
a characteristic feature of the heat transfer by diffusion. The boundary PC .= 2 separates 

these two characteristic modes of the heat transfer. 
Note that the solution of the problem inaregion with the point r ~0 removed, has a 

physical meaning only when Pe>2. When PC,;:! and r--O, the non-physical negative 
temperatures obtain. 

In the case of a Landau jet the physically admissible solutions can be obtained only in 
the region o< N,, ' II, since a region with U(S)(() always exists. Just as in the Case of 
a plane hydrodynamic sink, the insolubility curve for the problem (6) t (9) l'r:, = 1'1' ([If) 
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separates the region of the primary convective heat transfer (Pr > Pr,), from the region of the 

primary conductive heat transfer (Prc Pr,). 
Indeed, if the thermal flux at infinity is zero, then 7,EO, and in the case of Pr> 

Pr, the principal term, as R-+00, represents the particular solution of the inhomogeneous 
equation (2): 2 (5) R-', and the temperature at infinity will be determined by the dissipative 

heating and not by the heat source on the sphere R =R,,. If on the other hand Pr < Pr,, 

then the dipole term of the solution of the homogeneous Eq.(2) will become principal as R+oo, 
i.e. in this case the influence of the boundary condition at R =R, will extend to infinity, 
the latter effect being characteristic for conductive heat conduction. 

If the heat flux at infinity is not zero, then it hardly makes sense to distinguish 

between those two modes of heat transfer. It should be noted that the possibility of separating 

the heat transfer modes depends essentially on the manner in which the heat source, which in 
the present case is the viscous dissipation of kinetic energy of the fluid, is distributed 
throughout the volume. 
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ON THE NON-LINEAR MAXWELL-TYPE DEFINING EQUATIONS FOR DESCRIBING 
THE MOTIONS OF POLYMER LIQUIDS* 

A.N. PROKUNIN 

The problem of using non-linear Maxwell equations containing elastic 
deformation as the intermediate parameter, to approximate experimental 
data on the motion of polymer liquids under arbitrary elastic deformations, 
is studied. The data used concern the simple shear, uniaxial tension and 
pure shear. The form of the dependence of the free eneryg and rate of 
irreversible deformation on the elastic deformation is expressed in 
specific terms. It is assumed that in the course of the deformation, 
directional phenomena such as crystallization and mechanical destruction 
play a negligible part. Maxwellian models where the total deformation is 
separated into the elastic and the irreversible part, were constructed 
in /l-12/**, initially in the region of small elastic deformations /l-3/. 
(**See also: Kuvshinskii E.V. Study of the flows of macropolymer solutions 
(Mechanics of Elastic and Viscoelastic Media). Dis. na soiskanie uch. st. 
dokt.fiz.matem.nauk. Leningrad, Leningr.fiz.-tkhn.in-t,l950; Leonov A-1. 
On the description of rheological behaviour of viscoelastic media under 
large elastic deformations. Preprint In-ta problem mekhan. Akad. Nauk 
SSSR, Moscow, No.34, 1973; Leonov A.I. Non-equilibrium thermodynamics 
and rheology of viscoelastic polymer media. Preprint lektsii prochitannoi 
v Mezhdunarodnoi shkole "Problemy teplo- 
slozhnykh sredakh "Minsk, 1975). 

i massoperenosa v reologicheski 

8,10/ 
The present paper deals with the basic propositions developed-in /7, 
for Maxwell media. Basically, we use the approach of /7/ in which 

the general form of Maxwell's equations is obtained within the framework 
of quasilinear non-equilibrium thermodynamics under the assumption that 
the locally equilibrium state of the medium is non-linearly elastic. The 
drawbacks apparent in the description of the experimental facts, based on 
specific equations, 
proposed. 

are noted and a simple method for overcoming them is 
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